Abstract
AbstractIn the present paper, we study invariant submanifolds of almost Kenmotsu structures whose Riemannian curvature tensor has $$(\kappa ,\mu ,\nu )$$
(
κ
,
μ
,
ν
)
-nullity distribution. Since the geometry of an invariant submanifold inherits almost all properties of the ambient manifold, we research how the functions $$\kappa ,\mu $$
κ
,
μ
and $$\nu $$
ν
behave on the submanifold. In this connection, necessary and sufficient conditions are investigated for an invariant submanifold of an almost Kenmotsu $$(\kappa ,\mu ,\nu )$$
(
κ
,
μ
,
ν
)
-space to be totally geodesic under some conditions.
Publisher
Springer Science and Business Media LLC
Reference19 articles.
1. Kim, T.W.; Pak, H.K.: Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. English Ser. 21(4), 841–856 (2005)
2. Koufogiorgos, T.; Markellos, M.; Papantoniou, V.J.: The harmonicity of the Reeb vector fields on contact 3-manifolds. Pasific J. Math. 234(2), 325–344 (2008)
3. Blair, D.E.; Koufogiorgos, T.; Papantoniou, B.J.: Contact metric manifolds satisfying a nullity condition. Israel J. Math. 91(1–3), 189–214 (1995)
4. Ozturk, H., Aktan, N., Murathan, C.: Almost $$\alpha $$-Cosymplectic $$(\kappa ,\mu ,\nu )$$-Spaces. ArXiv:1007.0527v1.
5. Carriazo, A.; Martin-Molina, V.: Almost cosymplectic and almost Kenmotsu $$(\kappa ,\mu ,\nu )$$-spaces. Mediterr. J. Math. 10, 1551–1571 (2013)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献