Author:
Tribak Rachid,Talebi Yahya,Hosseinpour Mehrab
Abstract
AbstractLet R be a ring and let M be an R-module with $$S={\text {End}}_R(M)$$
S
=
End
R
(
M
)
. The module M is called quasi-dual Baer if for every fully invariant submodule N of M, $$\{\phi \in S \mid Im\phi \subseteq N\} = eS$$
{
ϕ
∈
S
∣
I
m
ϕ
⊆
N
}
=
e
S
for some idempotent e in S. We show that M is quasi-dual Baer if and only if $$\sum _{\varphi \in \mathfrak {I}} \varphi (M)$$
∑
φ
∈
I
φ
(
M
)
is a direct summand of M for every left ideal $$\mathfrak {I}$$
I
of S. The R-module $$R_R$$
R
R
is quasi-dual Baer if and only if R is a finite product of simple rings. Other characterizations of quasi-dual Baer modules are obtained. Examples which delineate the concepts and results are provided.
Publisher
Springer Science and Business Media LLC
Reference10 articles.
1. Amouzegar, T.; Talebi, Y.: On Quasi-dual Baer modules. TWMS J. Pure Appl. Math. 4(1), 78–86 (2013)
2. Anderson, F.W.; Fuller, K.R.: Rings and Categories of Modules. Springer, New York (1974)
3. Goodearl, K.R.: Von Neumann Regular Rings. Pitman, London (1979)
4. Keskin Tütüncü, D.; Tribak, R.: On dual Baer modules. Glasg. Math. J. 52(2), 261–269 (2010)
5. Lam, T.Y.: A First Course in Noncommutative Rings, Second edition, Graduate Texts in Mathematics 131. Springer, New York (2001)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. CS-Baer and dual CS-Baer objects in abelian categories;Journal of Algebra and Its Applications;2022-07-07