H-convergence of a class of quasilinear equations in perforated domains beyond periodic setting

Author:

Haddadou HamidORCID

Abstract

AbstractIn this paper, we aim to study the asymptotic behavior (when $$\varepsilon \;\rightarrow \; 0$$ ε 0 ) of the solution of a quasilinear problem of the form $$-\mathrm{{div}}\;(A^{\varepsilon }(\cdot ,u^{\varepsilon }) \nabla u^{\varepsilon })=f$$ - div ( A ε ( · , u ε ) u ε ) = f given in a perforated domain $$\Omega \backslash T_{\varepsilon }$$ Ω \ T ε with a Neumann boundary condition on the holes $$T_{\varepsilon }$$ T ε and a Dirichlet boundary condition on $$\partial \Omega $$ Ω . We show that, if the holes are admissible in certain sense (without any periodicity condition) and if the family of matrices $$(x,d)\mapsto A^{\varepsilon }(x,d)$$ ( x , d ) A ε ( x , d ) is uniformly coercive, uniformly bounded and uniformly equicontinuous in the real variable d, the homogenization of the problem considered can be done in two steps. First, we fix the variable d and we homogenize the linear problem associated to $$A^{\varepsilon }(\cdot ,d)$$ A ε ( · , d ) in the perforated domain. Once the $$H^{0}$$ H 0 -limit $$A^{0}(\cdot ,d)$$ A 0 ( · , d ) of the pair $$(A^{\varepsilon },T^{\varepsilon })$$ ( A ε , T ε ) is determined, in the second step, we deduce that the solution $$u^{\varepsilon }$$ u ε converges in some sense to the unique solution $$u^{0}$$ u 0 in $$H^{1}_{0}(\Omega )$$ H 0 1 ( Ω ) of the quasilinear equation $$-\mathrm{{div}}\;(A^{0}(\cdot ,u^{0})\nabla u )=\chi ^{0}f$$ - div ( A 0 ( · , u 0 ) u ) = χ 0 f (where $$ \chi ^{0}$$ χ 0 is $$L^{\infty }$$ L weak $$^{\star }$$ limit of the characteristic function of the perforated domain). We complete our study by giving two applications, one to the classical periodic case and the second one to a non-periodic one.

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference14 articles.

1. Artola, M.; Duvaut, G.: Homognisation d’une classe de problmes non linaires. C. R. Acad. Paris Ser. A 288, 775–778 (1979)

2. Bendib, S.: Homogénéisation dune classe de problèmes non linéaires avec des conditions de Fourier dans des ouverts perforés. Thèse, Institut National Polytechnique de Lorraine (2004)

3. Bendib, S.; Tcheugou, T.R.: Homogénéisation dune classe de problèmes non linéaires dans des domaines perforés. C. R. Acad. Sci. Paris t. Ser. 1(328), 1145–1149 (1999)

4. Boccardo, L.; Murat, F.; Homogénéisation de problèmes quasi linéaires, Atti del convergno, Studio di Problemi-Limite dellAnalisi Funzionale (Bressanone 79 sett. 1981), vol. 1351. Pitagora Editrice. Bologna (1982)

5. Briane, M.; Damlamian, A.; Donato, P.: H-convergence in perforated domains, in non-linear partial differential equations and their applications. In: Cioranescu, D., Lions, J.L. (eds.) Collège de France seminar vol. XIII. Pitman Research Notes in Mathematics Series, vol. 391. Longman, New York (1998)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3