Abstract
AbstractIn this article, with an essential assumption, we provide an evolution formula for the Yamabe constant along of the Ricci–Bourguignon flow of an n-dimensional closed Riemannian manifold for $$n\ge 3$$
n
≥
3
. In particular, we show that Yamabe constant is increasing on $$[0, \delta ]$$
[
0
,
δ
]
for some $$\delta >0$$
δ
>
0
.
Publisher
Springer Science and Business Media LLC
Reference27 articles.
1. Azami, S.: First eigenvalues of geometric operator under the Ricci-Bourguignon flow. J. Indones. Math. Soc. 24, 51–60 (2018)
2. Aubin, T.: Some nonlinear problems in Riemannian geometry, Springer Monographs in Mathematics. Springer, Berlin (1998)
3. Barbosu, E.; Ribeiro, E., Jr.: On conformal solutions of the Yamabe flow. Arch. Math. 101, 79–89 (2013)
4. Besse, A.: Einstein manifolds. Springer-Verlag, Berlin (1987)
5. Botvinnik, B.; Lu, P.: Evolution of relative Yamabe constant under Ricci flow. Osaka J. Math. 57, 579–687 (2020)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献