Abstract
AbstractIn this paper, we investigate the growth of meromorphic solutions of homogeneous and non-homogeneous linear difference equations $$\begin{aligned} A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} 0, \\ A_{k}(z)f(z+c_{k})+\cdots +A_{1}(z)f(z+c_{1})+A_{0}(z)f(z)= & {} F, \end{aligned}$$
A
k
(
z
)
f
(
z
+
c
k
)
+
⋯
+
A
1
(
z
)
f
(
z
+
c
1
)
+
A
0
(
z
)
f
(
z
)
=
0
,
A
k
(
z
)
f
(
z
+
c
k
)
+
⋯
+
A
1
(
z
)
f
(
z
+
c
1
)
+
A
0
(
z
)
f
(
z
)
=
F
,
where $$A_{k}\left( z\right) ,\ldots ,A_{0}\left( z\right) ,$$
A
k
z
,
…
,
A
0
z
,
$$F\left( z\right) $$
F
z
are meromorphic functions and $$c_{j}$$
c
j
$$\left( 1,\ldots ,k\right) $$
1
,
…
,
k
are non-zero distinct complex numbers. Under some conditions on the coefficients, we extend early results due to Zhou and Zheng, Belaïdi and Benkarouba.
Publisher
Springer Science and Business Media LLC
Reference21 articles.
1. Belaïdi, B.; Benkarouba, Y.: Some properties of meromorphic solutions of higher order linear difference equations. Ser. A Appl. Math. Inform. Mech. 11(2), 75–95 (2019)
2. Cao, T.B.; Xu, J.F.; Chen, Z.X.: On the meromorphic solutions of linear differential equations on the complex plane. J. Math. Anal. Appl. 364(1), 130–142 (2010)
3. Chiang, Y.M.; Feng, S.J.: On the Nevanlinna characteristic of $$f\left( z+\eta \right) $$ and difference equations in the complex plane. Ramanujan J. 16(1), 105–129 (2008)
4. Goldberg, A., Ostrovskii, I.: Value Distribution of Meromorphic functions. Transl. Math. Monogr., vol. 236, Amer. Math. Soc., Providence (2008)
5. Halburd, R.G.; Korhonen, R.J.: Difference analogue of the lemma on the logarithmic derivative with applications to difference equations. J. Math. Anal. Appl. 314(2), 477–487 (2006)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献