Surjectivity of certain adjoint operators and applications

Author:

Cherifi Hadjiat AminaORCID,Lansari Azzeddine

Abstract

AbstractThis paper is an extension and generalization of some previous works, such as the study of M. Benalili and A. Lansari. Indeed, these authors, in their work about the finite co-dimension ideals of Lie algebras of vector fields, restricted their study to fields $$X_0$$ X 0 of the form $$X_0=\sum _{i=1}^{n}( \alpha _i \cdot x_i+\beta _i\cdot x_i^{1+m_i}) \frac{\partial }{\partial x_i}$$ X 0 = i = 1 n ( α i · x i + β i · x i 1 + m i ) x i , where $$\alpha _i, \beta _i $$ α i , β i are positive and $$m_i$$ m i are even natural integers. We will first study the sub-algebra U of the Lie-Fréchet space E, containing vector fields of the form $$Y_0 = X_0^+ + X_0^- + Z_0$$ Y 0 = X 0 + + X 0 - + Z 0 , such as $$ X_0\left( x,y\right) =A\left( x,y\right) =\left( A^{-}\left( x \right) ,A^{+}\left( y\right) \right) $$ X 0 x , y = A x , y = A - x , A + y , with $$A^-$$ A - (respectively, $$ A^+ $$ A + ) a symmetric matrix having eigenvalues $$ \lambda < 0$$ λ < 0 (respectively, $$\lambda >0 $$ λ > 0 ) and $$Z_0$$ Z 0 are germs infinitely flat at the origin. This sub-algebra admits a hyperbolic structure for the diffeomorphism $$\psi _{t*}=(exp\cdot tY_0)_*$$ ψ t = ( e x p · t Y 0 ) . In a second step, we will show that the infinitesimal generator $$ad_{-X}$$ a d - X is an epimorphism of this admissible Lie sub-algebra U. We then deduce, by our fundamental lemma, that $$U=E$$ U = E .

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Reference12 articles.

1. Benalili, M.: Linearization of vector fields and embedding of diffeomorphisms in flows via nash -moser theorem. J. Geom. Phys. 61, 62–76 (2011)

2. Benalili, M.; Lansari, A.: Ideals of finite codimension in contact lie algebra. J. Lie Theory 11(1), 129–134 (2001)

3. Benalili, M.; Lansari, A.: Une propriété des idéaux de codimension finie des algébres de Lie de champs de vecteurs. J. Lie Theory 15(1), 13–25 (2005)

4. Borichev, A.; Hedenmalm, H.: Completeness of translates in weighted spaces on the half-line. Acta Math. 174, 1–84 (1995)

5. Domar, Y.: On the analytic transform of bounded linear functionals on certain banach algebras. Stud. Math. 53, 203–224 (1975)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3