A comparison of the use of traditional glazing and a novel concentrated photovoltaic glazing (CoPVG) for building solar gain analysis using IESVE

Author:

Chang RomaORCID,Mondol Jayanta Deb,Smyth Mervyn,Zacharopoulos Aggelos,Pugsley Adrian

Abstract

AbstractThe aim of this study is to compare the difference in solar gain for an internal space when a novel Concentrated Photovoltaic Glazing (CoPVG) unit is compared against traditional glazing modules. The CoPVG is an innovative glazing system developed by Ulster University, that takes advantage of Total Internal Reflection (TIR) to direct solar radiation into the internal space during periods of low solar altitude (around winter) harnessing the thermal contribution of solar gain and daylight. During periods of higher solar altitude (around summer), the solar radiation is mostly directed onto embedded photovoltaic cells. Previous work assessed the concept’s optical functionality, through experimental measurement and computational ray-tracing. Dynamic simulation in Matrix Laboratory (MATLAB) using a series of codes to represent the optical function of the CoPVG’s and Integrated Environmental Solutions Virtual Environment (IESVE) was validated by the experimental data. This work investigates methodologies in determining the transmissivty of the system in a dynamic simulation approach using ray tracing and Radiance in IESVE for visualisation, thereby building on the versability of this software to allow building designers and consultants to investigate energy and economic benefits of this system and systems like it in real building applications. The impact of integrating CoPVG as a replacement to traditonal glazing on a sun-facing building facade is assessed and the solar gain in the adjaciant space is compared throughout the year. During the summer months the integrated system reduces solar gain in the space by 34% but only 11% in the winter months, representing a reduction in the overall annual building energy needs. The study presents the potential economic and environmental savings provided by reduced cooling.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3