Towards big data behavioral analysis: rethinking GPS trajectory mining approaches from geographic, semantic, and quantitative perspectives

Author:

Huang WeixinORCID,Wang Luying

Abstract

AbstractThe question regarding the actual usage of built environments is of immense importance in behavioral research. Yet traditional methods of collecting and analyzing data on movements and activities often lack needed accuracy and granularity. Thus, this article reviewed and summarized the applicability of emergent GPS trajectory mining approaches in the field of architecture from geographic, semantic, and quantitative perspectives, respectively. Accordingly, three experiments based on a case study using real GPS trajectory data from visitors to the Palace Museum in China were conducted to examine the usefulness and weakness of the aforementioned approaches. The findings revealed that although all three dimensions of the trajectory mining approaches had the potential to provide useful information for architectural and urban design, the higher the dimensionality in utilizing the data, the more effective the approach was in discovering generalizable knowledge of human behavioral pattern. Furthermore, the results suggested that to gain insights into the typological characteristics of human behaviors related to the built environments, the contribution of trajectory data alone was limited, hence, conventional field surveys and questionnaires which contain information on individual characteristics and spatial features should be used in conjunction. Future research and practical implications were outlined.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Challenges and further directions of research on spatial thinking strategies;Bulletin of Kemerovo State University. Series: Humanities and Social Sciences;2023-12-25

2. A novel ensemble-based paradigm to process large-scale data;Multimedia Tools and Applications;2023-09-02

3. FEATURES OF COLLECTING AND ANALYZING BIG DATA IN THE ECONOMY;Экономика и предпринимательство;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3