Sustainability and 3D concrete printing: identifying a need for a more holistic approach to assessing environmental impacts

Author:

Heywood KateORCID,Nicholas PaulORCID

Abstract

AbstractThis paper aims to identify the current status of research in 3D concrete printing (3DCP), locate the sustainability considerations relevant to these trajectories, and to identify a gap in knowledge and future research challenge regarding the sustainability of 3DCP. To categorize the broad range of research topics within 3DCP, the paper introduces an assessment framework that subdivides this field into three sub-fields: material science, computational design, and structure and performance. Common sustainability considerations are identified for each of these sub-fields. As a result of this analysis, a lack of critical assessments on claims about the sustainability and environmental impacts of 3DCP is identified.Our survey of literature, and its analysis via this framework, finds that whilst certain sustainability aspects are highlighted, other measures and considerations are skimmed over, or omitted. It is found that whilst material optimization and the ability to create formwork-free, complex forms is noted as a main argument for the implementation of 3DCP, this claim is largely unsupported by reference or reported outcomes, and the environmental impacts are often only briefly discussed. There is a clear need for a holistic view on the sustainability issues which surround 3DCP.This paper further highlights the lack of comprehensive assessment tools and metrics for measuring the environmental impact of 3DCP and concludes that further research must be done to develop these tools, to allow architects to integrate 3DCP into sustainability-oriented design workflows. Our paper concludes that the development of these tools will lead to a more comprehensive understanding on the environmental sustainability of 3DCP, allowing research resources to be focused within each field to ensure 3DCP continues to develop in a sustainable way.

Funder

Innovationsfonden

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3