Trajectory optimisation in collaborative robotics based on simulations and genetic algorithms

Author:

Zanchettin Andrea MariaORCID,Messeri CostanzaORCID,Cristantielli Davide,Rocco PaoloORCID

Abstract

AbstractThe separation distance between humans and robots in manufacturing shop-floors has been progressively reduced, thanks to the modern safety functionalities available in robot controllers. However, the activation of these safety criteria usually stops the production or reduces the productivity of machines and robots. With the aim of improving this situation, this paper presents a real-time trajectory optimisation method for collaborative robots. The robot trajectory is parameterised at instruction level, i.e. through the parameters characterizing the robot motion instruction. A genetic algorithm randomly modifies the parameters of the nominal trajectory of the robot, thus obtaining new sets of candidate trajectories. Each trajectory is simulated on a digital twin of the collaborative workspace, which allows to reproduce and simulate the robot motion, and to represent the volume of the work-cell occupied by the human operator. A lexicographic optimization is used to evaluate online the optimal robot trajectory that simultaneously minimizes the risk of collision with the human operator and the trajectory traversal time. The method is validated in an industrial scenario involving the ABB YuMi dual-arm robot for a small parts assembly task.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Science Applications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent optimization algorithms for control error compensation and task scheduling for a robotic arm;International Journal of Intelligent Robotics and Applications;2024-03-04

2. Optimization of the pick-and-place sequence of a bimanual collaborative robot in an industrial production line;The International Journal of Advanced Manufacturing Technology;2024-01-13

3. Trajectory planning of tire laser engraving orthogonal robot based on an improved multi-objective grasshopper optimization algorithm;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-01-09

4. Adaptive Fuzzy Control Design and Implementation of Genetic Algorithm Based Robot System;2023 IEEE 15th International Conference on Computational Intelligence and Communication Networks (CICN);2023-12-22

5. Evolutionary Computation Techniques for Path Planning Problems in Industrial Robotics: A State-of-the-Art Review;Computation;2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3