Abstract
AbstractDouble-chambered right ventricle (DCRV) is a progressive division of the right ventricular outflow tract (RVOT) often associated with a subaortic ventricular defect (VSD). The septation is caused by a mixture of hypertrophied muscle bundles and fibrous tissue, whereof the latter is of unclear pathogenesis. Our group has previously reported that flow disturbances lead to formation of fibroelastic tissue through a process called endothelial-to-mesenchymal transition (EndMT) but it is unclear whether the same mechanism exists in the RV. Tissue from patients undergoing repair of DCRV was examined to identify the histomorphological substrate of this tissue. Demographic and pre-/post-operative echocardiographic data were collected from nine patients undergoing surgery for DCRV. RVOTO tissue samples were histologically analyzed for myocardial hypertrophy, fibrosis, elastin content, and active EndMT (immunohistochemical double-staining for endothelial and mesenchymal markers and transcription factors Slug/Snail) and compared to four healthy controls. Indication for surgery were symptoms and progressive RVOT gradients. A highly turbulent flow jet through the RVOTO and VSD was observed in all patients with a preoperative median RVOT peak gradient of 77 mmHg (IQR 55.0–91.5), improved to 6 mmHg (IQR 4.5–17) postoperatively. Histological analysis revealed muscle and thick infiltratively growing fibroelastic tissue. EndMT was confirmed as underlying patho-mechanism of this fibroelastic tissue but the degree of myocardial hypertrophy was not different compared to controls (P = 0.08). This study shows for the first time that an invasive fibroelastic remodeling processes of the endocardium into the underlying myocardium through activation of EndMT contributes to the septation of the RVOT.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Pediatrics, Perinatology and Child Health