The Value of the Biomarkers Neuron-Specific Enolase and S100 Calcium-Binding Protein for Prediction of Mortality in Children Resuscitated After Cardiac Arrest

Author:

Bangshøj Johanne,Liebetrau Benedikte,Wiberg Sebastian,Gjedsted Jakob,Kjærgaard Jesper,Hassager Christian,Wanscher Michael

Abstract

AbstractThe aim of the present study was to assess the ability of the biomarkers neuron-specific enolase (NSE) and S100 calcium-binding protein b (S100b) to predict 30 day mortality in children resuscitated from cardiac arrest (CA). It was a prospective observational study at a single tertiary heart centre. Consecutive children were admitted after resuscitated in-hospital and out-of-hospital CA. Levels of NSE and S100b were analyzed from 12 to 24 hours, from 24 to 48 hours, and from 48 to 72 hours after admission. The primary endpoint was 30-day mortality. Differences in biomarker levels between survivors and non-survivors were analyzed with the Mann-Whitney U test. Receiver operating characteristics (ROC) curves were applied to assess the predictive ability of the biomarkers and the areas under the ROC curves (AUC) were presented. A total of 32 resuscitated CA patients were included, and 12 (38%) patients died within 30 days after resuscitation. We observed significantly higher levels of NSE and S100b in non-survivors compared to survivors at all timepoints from 12 to 72 hours after CA. NSE achieved AUCs from 0.91–0.98 for prediction of 30 day mortality, whereas S100b achieved AUCs from 0.93–0.94. An NSE cut-off of 61 μg/L sampled between 12–24 hours from admission achieved a sensitivity of 80% and a specificity of 100% for prediction of 30 day mortality. In children resuscitated from CA, the biomarkers NSE and S100b appear to be solid predictors of mortality after 30 days.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3