Author:
Lahav Ori,Marcos João,Zohar Yoni
Abstract
Abstract
Non-classical negations may fail to be contradictory-forming operators in more than one way, and they often fail also to respect fundamental meta-logical properties such as the replacement property. Such drawbacks are witnessed by intricate semantics and proof systems, whose philosophical interpretations and computational properties are found wanting. In this paper we investigate congruential non-classical negations that live inside very natural systems of normal modal logics over complete distributive lattices; these logics are further enriched by adjustment connectives that may be used for handling reasoning under uncertainty caused by inconsistency or undeterminedness. Using such straightforward semantics, we study the classes of frames characterized by seriality, reflexivity, functionality, symmetry, transitivity, and some combinations thereof, and discuss what they reveal about sub-classical properties of negation. To the logics thereby characterized we apply a general mechanism that allows one to endow them with analytic ordinary sequent systems, most of which are even cut-free. We also investigate the exact circumstances that allow for classical negation to be explicitly defined inside our logics.
Funder
Max Planck Institute for Software Systems
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Logic
Reference40 articles.
1. Avron, A., Ciabattoni, A., Zamansky, A.: Canonical calculi: invertibility, axiom expansion and (non)-determinism. In: Proceedings of the Fourth International Computer Science Symposium in Russia on Computer Science—Theory and Applications, CSR’09, pp. 26–37. Springer, Berlin (2009)
2. Avron, A., Konikowska, B., Zamansky, A.: Efficient reasoning with inconsistent information using C-systems. Inf. Sci. 296, 219–236 (2015)
3. Avron, A., Zamansky, A.: A paraconsistent view on $$B$$ and $$S5$$. In: Beklemishev, L., Demri, S., Máté, A. (eds.) Advances in Modal Logic, vol. 11, pp. 21–37. College Publications, London (2016)
4. Béziau, J.-Y.: Paraconsistent logic from a modal viewpoint. J. Appl. Log. 3, 7–14 (2005)
5. Carnielli, W.A., Marcos, J.: A taxonomy of C-systems. In: Carnielli, W.A., Coniglio, M.E., D’Ottaviano, I.M.L. (eds.) Paraconsistency: The Logical Way to the Inconsistent, Vol. 228 of Lecture Notes in Pure and Applied Mathematics, pp. 1–94. Marcel Dekker, New York (2002)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献