Bases for Structures and Theories II

Author:

Ketland Jeffrey

Abstract

AbstractIn Part I of this paper (Ketland in Logica Universalis 14:357–381, 2020), I assumed we begin with a (relational) signature $$P = \{P_i\}$$ P = { P i } and the corresponding language $$L_P$$ L P , and introduced the following notions: a definition system$$d_{\Phi }$$ d Φ for a set of new predicate symbols $$Q_i$$ Q i , given by a set $$\Phi = \{\phi _i\}$$ Φ = { ϕ i } of defining $$L_P$$ L P -formulas (these definitions have the form: $$\forall \overline{x}(Q_i(x) \leftrightarrow \phi _i)$$ x ¯ ( Q i ( x ) ϕ i ) ); a corresponding translation function$$\tau _{\Phi }: L_Q \rightarrow L_P$$ τ Φ : L Q L P ; the corresponding definitional image operator$$D_{\Phi }$$ D Φ , applicable to $$L_P$$ L P -structures and $$L_P$$ L P -theories; and the notion of definitional equivalence itself: for structures $$A + d_{\Phi } \equiv B + d_{\Theta }$$ A + d Φ B + d Θ ; for theories, $$T_1 + d_{\Phi } \equiv T_2 + d_{\Theta }$$ T 1 + d Φ T 2 + d Θ . Some results relating these notions were given, ending with two characterizations for definitional equivalence. In this second part, we explain the notion of a representation basis. Suppose a set $$\Phi = \{\phi _i\}$$ Φ = { ϕ i } of $$L_P$$ L P -formulas is given, and $$\Theta = \{\theta _i\}$$ Θ = { θ i } is a set of $$L_Q$$ L Q -formulas. Then the original set $$\Phi $$ Φ is called a representation basis for an $$L_P$$ L P -structure A with inverse $$\Theta $$ Θ iff an inverse explicit definition $$\forall \overline{x}(P_i(\overline{x}) \leftrightarrow \theta _i)$$ x ¯ ( P i ( x ¯ ) θ i ) is true in $$A + d_{\Phi }$$ A + d Φ , for each $$P_i$$ P i . Similarly, the set $$\Phi $$ Φ is called a representation basis for a $$L_P$$ L P -theory T with inverse $$\Theta $$ Θ iff each explicit definition $$\forall \overline{x}(P_i(\overline{x}) \leftrightarrow \theta _i)$$ x ¯ ( P i ( x ¯ ) θ i ) is provable in $$T + d_{\Phi }$$ T + d Φ . Some results about representation bases, the mappings they induce and their relationship with the notion of definitional equivalence are given. In particular, we show that $$T_1$$ T 1 (in $$L_P$$ L P ) is definitionally equivalent to $$T_2$$ T 2 (in $$L_Q$$ L Q ), with respect to $$\Phi $$ Φ and $$\Theta $$ Θ , if and only if $$\Phi $$ Φ is a representation basis for $$T_1$$ T 1 with inverse $$\Theta $$ Θ and $$T_2 \equiv D_{\Phi }T_1$$ T 2 D Φ T 1 .

Funder

University of Warsaw

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Logic

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3