1. Bauer, S. D., Korč, F., & Förstner, W. (2009). Investigation into the classification of diseases of sugar beet leaves using multispectral images. In E. J. van Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture ‘09 (pp. 229–238). Wageningen: Wageningen Academic Press.
2. Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and Hidden Markov models. Technical report. Berkeley: University of California at Berkeley, International Computer Science Institute, Department of Electrical Engineering and Computer Science.
3. Chekuri, C., Khanna, S., Naor, J., & Zosin, L. (2001). Approximation algorithms for the metric labelling problem via a new linear programming formulation. In Proceedings of the twelfth annual ACM-SIAM symposium on discrete algorithms (pp. 109–118). Washington, DC: ACM/SIAM.
4. Fukunaga, K. (1972). Introduction to statistical pattern recognition. New York: Academic Press.
5. Huang, K.-Y. (2007). Application of artificial neural network for detecting Phalaenopsis seedling diseases using color and texture features. Computers and Electronics in Agriculture, 57, 3–11.