Using UAV-based hyperspectral imaging and functional regression to assist in predicting grain yield and related traits in wheat under heat-related stress environments for the purpose of stable yielding genotypes

Author:

Costa Lucas,McBreen Jordan,Ampatzidis YiannisORCID,Guo Jia,Gahrooei Mostafa Reisi,Babar Md Ali

Abstract

AbstractQuantifying certain physiological traits under heat-stress is crucial for maximizing genetic gain for wheat yield and yield-related components. In-season estimation of different physiological traits related to heat stress tolerance can ensure the finding of germplasm, which could help in making effective genetic gains in yield. However, estimation of those complex traits is time- and labor-intensive. Unmanned aerial vehicle (UAV) based hyperspectral imaging could be a powerful tool to estimate indirectly in-season genetic variation for different complex physiological traits in plant breeding that could improve genetic gains for different important economic traits, like grain yield. This study aims to predict in-season genetic variations for cellular membrane thermostability (CMT), yield and yield related traits based on spectral data collected from UAVs; particularly, in cases where there is a small sample size to collect data from and a large range of features collected per sample. In these cases, traditional methods of yield-prediction modeling become less robust. To handle this, a functional regression approach was employed that addresses limitations of previous techniques to create a model for predicting CMT, grain yield and other traits in wheat under heat stress environmental conditions and when data availability is constrained. The results preliminarily indicate that the overall models of each trait studied presented a good accuracy compared to their data’s standard deviation. The yield prediction model presented an average error of 13.42%, showing the function-on-function algorithm chosen for the model as reliable for small datasets with high dimensionality.

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3