Forecasting carrot yield with optimal timing of Sentinel 2 image acquisition

Author:

Suarez L. A.ORCID,Robertson-Dean M.,Brinkhoff J.,Robson A.

Abstract

AbstractAccurate, non-destructive forecasting of carrot yield is difficult due to its subterranean growing habit. Furthermore, the timing of forecasting usually occurs when the crop is mature, limiting the opportunity to implement alternative management decisions to improve yield (during the growing season). This study aims to improve the accuracy of carrot yield forecasting by exploring time series and multivariate approaches. Using Sentinel-2 satellite imagery in three Australian vegetable regions, we established a time series of carrot phenological stages (PhS) from ‘days after sowing’ (DAS) to enhance prediction timing. Numerous vegetation indices (VIs) were analyzed to derive temporal growth patterns. Correlations with yield at different PhS were established. Although the average root yield (t ha−1) did not significantly differ across the regions, the temporal VI signatures, indicating different regional crop growth trends, did vary as well as the PhS at when the maximum correlation with yield occurred ($$PhS_{{R2_{max} }} )$$ P h S R 2 max ) with two of the regions producing a delayed $$PhS_{{R2_{max} }}$$ P h S R 2 max (i.e. 90–130 DAS). The best multivariate model was identified at 70 DAS, extending the forecasting window before harvest between 20 to 60 days. The performance of this model was validated with new crops producing an average error of 16.9 t ha−1 (27% of total yield). These results demonstrate the potential of the model at such early stage under varying growing conditions offering growers and stakeholders the chance to optimize farming practices, make informed decisions on selling, harvesting, and labor planning, and adopt precision agriculture methods.

Funder

Hort Innovation

University of New England

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3