Suitability of satellite remote sensing data for yield estimation in northeast Germany

Author:

Vallentin Claudia,Harfenmeister KatharinaORCID,Itzerott Sibylle,Kleinschmit Birgit,Conrad Christopher,Spengler Daniel

Abstract

AbstractInformation provided by satellite data is becoming increasingly important in the field of agriculture. Estimating biomass, nitrogen content or crop yield can improve farm management and optimize precision agriculture applications. A vast amount of data is made available both as map material and from space. However, it is up to the user to select the appropriate data for a particular problem. Without the appropriate knowledge, this may even entail an economic risk. This study therefore investigates the direct relationship between satellite data from six different optical sensors as well as different soil and relief parameters and yield data from cereal and canola recorded by the thresher in the field. A time series of 13 years is considered, with 947 yield data sets consisting of dense point data sets and 755 satellite images. To answer the question of how well the relationship between remote sensing data and yield is, the correlation coefficient r per field is calculated and interpreted in terms of crop type, phenology, and sensor characteristics. The correlation value r is particularly high when a field and its crop are spatially heterogeneous and when the correct phenological time of the crop is reached at the time of satellite imaging. Satellite images with higher resolution, such as RapidEye and Sentinel-2 performed better in comparison with lower resolution sensors of the Landsat series. The additional Red Edge spectral band also has advantage, especially for cereal yield estimation. The study concludes that there are high correlation values between yield data and satellite data, but several conditions must be met which are presented and discussed here.

Funder

EIT Climate-KIC

Bundesministerium für Ernährung und Landwirtschaft

Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum - GFZ

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Reference87 articles.

1. AG Boden. (2005). Bodenkundliche Kartieranleitung. Bundesanstalt für Geowissenschaften und Rohstoffe und den Geologischen Landesämtern in der Bundesrepublik Deutschland Hannover. Bundesanstalt für Geowissenschaften und Rohstoffe in Zusammenarbeit mit den Staatlichen Geologischen Diensten.

2. Ali, A., Martelli, R., Lupia, F., & Barbanti, L. (2019). Assessing multiple years’ spatial variability of crop yields using satellite vegetation indices. Remote Sensing. https://doi.org/10.3390/rs11202384

3. Amt für Geoinformation Vermessungs- und Katasterwesen. (2011). DGM 5 - Digitales Geländemodell Gitterweite 5m - Mecklenburg-Vorpommern. Schwerin.

4. Auguie, B. (2017). gridExtra: Miscellaneous Functions for “Grid” Graphics. R package version 2.3. https://cran.r-project.org/package=gridExtra

5. Babar, M. A., van Ginkel, M., Klatt, A. R., Prasad, B., & Reynolds, M. P. (2006). The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica, 150(1–2), 155–172. https://doi.org/10.1007/s10681-006-9104-9

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3