Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de São Paulo
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Alabi, T. R., Abebe, A. T., Chigeza, G., & Fowobaje, K. R. (2022). Estimation of soybean grain yield from multispectral high-resolution UAV data with machine learning models in West Africa. Remote Sensing Applications: Society and Environment, 27. https://doi.org/10.1016/j.rsase.2022.100782
2. Amankulova, K., Farmonov, N., Akramova, P., Tursunov, I., & Mucsi, L. (2023). Comparison of PlanetScope, Sentinel-2, and Landsat 8 data in soybean yield estimation within-field variability with random forest regression. Heliyon, 9(6). https://doi.org/10.1016/j.heliyon.2023.e17432
3. Arslan, S. (2002). Grain Yield Mapping: Yield Sensing, Yield Reconstruction, and Errors. Precision Agriculture (Vol. 3).
4. Baptista, G. M. M. (2015). Aplicação do Índice de Vegetação por Profundidade de Feição Espectral (SFDVI - Spectral Feature Depth Vegetation Index) em dados RapidEye. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, 17. (SBSR), João Pessoa. Anais… São José dos Campos: INPE, 2015. pp. 2277–2284.
5. Blasch, G., Li, Z., & Taylor, J. A. (2020). Multi-temporal yield pattern analysis method for deriving yield zones in crop production systems. Precision Agriculture, 21(6), 1263–1290. https://doi.org/10.1007/s11119-020-09719-1