UAV-based canopy monitoring: calibration of a multispectral sensor for green area index and nitrogen uptake across several crops

Author:

Bukowiecki JosephineORCID,Rose Till,Holzhauser Katja,Rothardt Steffen,Rose Maren,Komainda Martin,Herrmann Antje,Kage Henning

Abstract

AbstractThe fast and accurate provision of within-season data of green area index (GAI) and total N uptake (total N) is the basis for crop modeling and precision agriculture. However, due to rapid advancements in multispectral sensors and the high sampling effort, there is currently no existing reference work for the calibration of one UAV (unmanned aerial vehicle)-based multispectral sensor to GAI and total N for silage maize, winter barley, winter oilseed rape, and winter wheat.In this paper, a practicable calibration framework is presented. On the basis of a multi-year dataset, crop-specific models are calibrated for the UAV-based estimation of GAI throughout the entire growing season and of total N until flowering. These models demonstrate high accuracies in an independent evaluation over multiple growing seasons and trial sites (mean absolute error of 0.19–0.48 m2 m−2 for GAI and of 0.80–1.21 g m−2 for total N). The calibration of a uniform GAI model does not provide convincing results. Near infrared-based ratios are identified as the most important component for all calibrations. To account for the significant changes in the GAI/ total N ratio during the vegetative phase of winter barley and winter oilseed rape, their calibrations for total N must include a corresponding factor. The effectiveness of the calibrations is demonstrated using three years of data from an extensive field trial. High correlation of the derived total N uptake until flowering and the whole-season radiation uptake with yield data underline the applicability of UAV-based crop monitoring for agricultural applications.

Funder

Stiftung Schleswig-Holsteinische Landschaft

Bundesministerium für Bildung und Forschung

Bundesministerium für Ernährung und Landwirtschaft

Christian-Albrechts-Universität zu Kiel

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3