Mapping stressed wheat plants by soil aluminum effect using C-band SAR images: implications for plant growth and grain quality

Author:

Hernández Mercedes,Borges Andrés A.,Francisco-Bethencourt DesiderioORCID

Abstract

AbstractUnder toxic aluminum (Al) levels in the soil, wheat (Triticum aestivum L.) suffers stress and plant growth is affected. A method for diagnosis of plants is proposed that includes the following as a strategy: to analyze total Al in the soil, employ satellite radar imagery and calculate a vegetation index. The objective of this research, conducted at the field scale, was to explore how radar backscattering coefficients from a winter wheat canopy, combined with the normalized difference vegetation index (NDVI) and geographic information system (GIS) technology, can be used as a mapping tool for the variability of Al-stressed canopies. As a result, an analysis of covariance showed significant differences, and the lowest plant height was obtained at a high level of soil Al, as well as the minimum grain weight and magnesium content. It was found that a simple model could be used to estimate plant height from the backscattering coefficient of vertical transmit-vertical receive polarization (σ°VV), with a strong correlation (r − 0.84). In turn, a third-order polynomial regression model (R2 0.70) was proposed to estimate the NDVI from σ°VV. This model provided a good estimate of the NDVI at the stem elongation stage of growth (50 days after sowing). Detected NDVI patterns were associated with variation in canopy stress depending on polarimetric information, which, in turn, was related to soil Al levels. Thus, the maps derived from the model can monitor spatial variability, where NDVI values < 0.68 indicate stressed areas. This study provides guidance for in-season stress spatial variability caused by Al.

Funder

Framework collaboration agreement between CSIC and Cabildo Insular de La Palma

Consejo Superior de Investigaciones Cientificas

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3