Field validation of NDVI to identify crop phenological signatures

Author:

Bhatti Muhammad TousifORCID,Gilani Hammad,Ashraf Muhammad,Iqbal Muhammad Shahid,Munir Sarfraz

Abstract

Abstract Purpose and Methods Crop identification using remotely sensed imagery provides useful information to make management decisions about land use and crop health. This research used phonecams to acquire the Normalized Difference Vegetation Index (NDVI) of various crops for three crop seasons. NDVI time series from Sentinel (L121-L192) images was also acquired using Google Earth Engine (GEE) for the same period. The resolution of satellite data is low therefore gap filling and smoothening filters were applied to the time series data. The comparison of data from satellite images and phenocam provides useful insight into crop phenology. The results show that NDVI is generally underestimated when compared to phenocam data. The Savitzky-Golay (SG) and some other gap filling and smoothening methods are applied to NDVI time series based on satellite images. The smoothened NDVI curves are statistically compared with daily NDVI series based on phenocam images as a reference. Results The SG method has performed better than other methods like moving average. Furthermore, polynomial order has been found to be the most sensitive parameter in applying SG filter in GEE. Sentinel (L121-L192) image was used to identify wheat during the year 2022–2023 in Sargodha district where experimental fields were located. The Random Forest Machine Leaning algorithm was used in GEE as a classifier. Conclusion The classification accuracy has been found 97% using this algorithm which suggests its usefulness in applying to other areas with similar agro-climatic characteristics.

Funder

United States Agency for International Development

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3