Machine learning approach for satellite-based subfield canola yield prediction using floral phenology metrics and soil parameters

Author:

Fernando HansaneeORCID,Ha Thuan,Nketia Kwabena Abrefa,Attanayake Anjika,Shirtliffe StevenORCID

Abstract

AbstractEarly monitoring of within-field yield variability and forecasting yield potential is critical for farmers and other key stakeholders such as policymakers. Remote sensing techniques are progressively being used in yield prediction studies due to easy access and affordability. Despite the increasing use of remote sensing techniques for yield prediction in agriculture, there is still a need for medium-resolution satellite imagery when predicting canola yield using a combination of crop and soil information. In this study, we investigated the utility of remotely sensed flowering information from PlanetScope (at 4 m) satellite imagery combined with derived soil and topography parameters to predict canola yield. Our yield prediction model was trained and validated using data from 21 fields managed under variable rate seed and fertilizer application, including cleaned harvester yield maps, soil, and topography maps. To quantify the flowering intensity of canola, 9 vegetation indices (VIs) were calculated using spectral bands from PlanetScope imagery acquired for the reproductive stages of canola. We created five random forest regression models using different subsets of covariates, including VIs, soil, and topography features, to predict canola yield within the season. Using a random forest regression algorithm, we recorded accuracies ranging from poor to best performing using coefficient of determination and root mean squared error (R2: 0.47 to 0.66, RMSE: 325 to 399 kg ha−1). The optimal subset of covariates identified electrical conductivity (EC), Normalized Difference Yellowness Index, and Canola Index as the key variables explaining within-spatial variability in canola yield. Our final model exhibited a validation R2 of 0.46 (RMSE = 730 kg ha−1), demonstrating the potential of medium-resolution satellite imagery during the flowering stage to detect and quantify sub-field spatial and temporal floral phenology changes when predicting canola yield.

Funder

Canada First Research Excellence Fund

New South Wales Institute of Psychiatry

P2IRC

Mitacs

Western Grains Research Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3