Metabolic and cardiovascular benefits and risks of 4-hydroxy guanabenz hydrochloride: α2-adrenoceptor and trace amine-associated receptor 1 ligand

Author:

Kotańska MagdalenaORCID,Marcinkowska Monika,Kuder Kamil J.,Walczak Maria,Bednarski Marek,Siwek Agata,Kołaczkowski Marcin

Abstract

Abstract Background α2-adrenoceptor ligands have been investigated as potential therapeutic agents for the treatment of obesity. Our previous studies have shown that guanabenz reduces the body weight of obese rats, presumably through its anorectic action. This demonstrates an additional beneficial effect on selected metabolic parameters, including glucose levels. The purpose of this present research was to determine the activity of guanabenz's metabolite—4-hydroxy guanabenz hydrochloride (4-OH-Guanabenz). Methods We performed in silico analyses, involving molecular docking to targets of specific interest as well as other potential biological targets. In vitro investigations were conducted to assess the selectivity profile of 4-OH-Guanabenz binding to α-adrenoceptors, along with intrinsic activity studies involving α2-adrenoceptors and trace amine-associated receptor 1 (TAAR1). Additionally, the effects of 4-OH-Guanabenz on the body weight of rats and selected metabolic parameters were evaluated using the diet-induced obesity model. Basic safety and pharmacokinetic parameters were also examined. Results 4-OH-guanabenz is a partial agonist of α2A-adrenoceptor. The calculated EC50 value for it is 316.3 nM. It shows weak agonistic activity at TAAR1 too. The EC50 value for 4-OH-Guanabenz calculated after computer simulation is 330.6 µM. Its primary mode of action is peripheral. The penetration of 4-OH-Guanabenz into the brain is fast (tmax = 15 min), however, with a low maximum concentration of 64.5 ng/g. 4-OH-Guanabenz administered ip at a dose of 5 mg/kg b.w. to rats fed a high-fat diet causes a significant decrease in body weight (approximately 14.8% compared to the baseline weight before treatment), reduces the number of calories consumed by rats, and decreases plasma glucose and triglyceride levels. Conclusions The precise sequence of molecular events within the organism, linking the impact of 4-OH-Guanabenz on α2A-adrenoceptor and TAAR1 with weight reduction and the amelioration of metabolic disturbances, remains an unresolved matter necessitating further investigation. Undoubtedly, the fact that 4-OH-Guanabenz is a metabolite of a well-known drug has considerable importance, which is beneficial from an economic point of view and towards its further development as a drug candidate.

Funder

Narodowe Centrum Nauki

Uniwersytet Jagielloński Collegium Medicum

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3