Author:
Gębarowski Tomasz,Wiatrak Benita,Gębczak Katarzyna,Tylińska Beata,Gąsiorowski Kazimierz
Abstract
Abstract
Background
The p53 protein is a transcription factor for many genes, including genes involved in inhibiting cell proliferation and inducing apoptosis in genotoxically damaged and tumor-transformed cells. In more than 55% of cases of human cancers, loss of the essential function of p53 protein is found. In numerous reports, it has been shown that small molecules (chemical compounds) can restore the suppressor function of the mutant p53 protein in tumor cells. The aim of this study was to evaluate the potential anticancer activity of three newly synthesized olivacine derivatives.
Methods
The study was performed using two cell lines—CCRF/CEM (containing the mutant p53 protein) and A549 (containing a non-mutant, wild-type p53 protein). The cells were incubated with olivacine derivatives for 18 h and then assays were carried out: measurement of the amount of p53 and p21 proteins, detection of apoptosis, cell cycle analysis, and rhodamine 123 accumulation assay (evaluation of P-glycoprotein inhibition). Multiple-criteria decision analysis was used to compare the anticancer activity of the tested compounds.
Results
Each tested compound caused the reconstitution of suppressor activity of the p53 protein in cells with the mutant protein. In addition, one of the compounds showed significant antitumor activity in both wild-type and mutant cells. For all compounds, a stronger effect on the level of the p53 protein was observed than for the reference compound—ellipticine.
Conclusions
The observed effects of the tested new olivacine derivatives (pyridocarbazoles) suggest that they are good candidates for new anticancer drugs.
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献