A Globally Applicable Method for NDVI Estimation from Sentinel-1 SAR Backscatter Using a Deep Neural Network and the SEN12TP Dataset

Author:

Roßberg ThomasORCID,Schmitt MichaelORCID

Abstract

AbstractVegetation monitoring is important for many applications, e.g., agriculture, food security, or forestry. Optical data from space-borne sensors and spectral indices derived from their data like the normalised difference vegetation index (NDVI) are frequently used in this context because of their simple derivation and interpretation. However, optical sensors have one major drawback: cloud coverage hinders data acquisition, which is especially troublesome for moderate and tropical regions. One solution to this problem is the use of cloud-penetrating synthetic aperture radar (SAR) sensors. Yet, with very different image characteristics of optical and SAR data, an optical sensor cannot be easily replaced by SAR sensors. This paper presents a globally applicable model for the estimation of NDVI values from Sentinel-1 C-band SAR backscatter data. First, the newly created dataset SEN12TP consisting of Sentinel-1 and -2 images is introduced. Its main features are the sophisticated global sampling strategy and that the images of the two sensors are time-paired. Using this dataset, a deep learning model is trained to regress SAR backscatter data to NDVI values. The benefit of auxiliary input information, e.g., digital elevation models, or land-cover maps is evaluated experimentally. After selection of the best model configuration, another experimental evaluation on a carefully selected hold-out test set confirms that high performance, low error, and good level of spatial detail are achieved. Finally, the potential of our approach to create dense NDVI time series of frequently clouded areas is shown. One limit of our approach is the neglect of the temporal characteristics of the SAR and NDVI data, since only data from a single date are used for prediction.

Funder

Bundesministerium für Wirtschaft und Energie

Universität der Bundeswehr München

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3