VOX2BIM+ - A Fast and Robust Approach for Automated Indoor Point Cloud Segmentation and Building Model Generation

Author:

Martens Jan,Blankenbach Jörg

Abstract

AbstractBuilding Information Modeling (BIM) plays a key role in digital design and construction and promises also great potential for facility management. In practice, however, for existing buildings there are often either no digital models or existing planning data is not up-to-date enough for use as as-is models in operation. While reality-capturing methods like laser scanning have become more affordable and fast in recent years, the digital reconstruction of existing buildings from 3D point cloud data is still characterized by much manual work, thus giving partially or fully automated reconstruction methods a key role. This article presents a combination of methods that subdivide point clouds into separate building storeys and rooms, while additionally generating a BIM representation of the building’s wall geometries for use in CAFM applications. The implemented storeys-wise segmentation relies on planar cuts, with candidate planes estimated from a voxelized point cloud representation before refining them using the underlying point data. Similarly, the presented room segmentation uses morphological operators on the voxelized point cloud to extract room boundaries. Unlike the aforementioned spatial segmentation methods, the presented parametric reconstruction step estimates volumetric walls. Reconstructed objects and spatial relations are modelled BIM-ready as IFC in one final step. The presented methods use voxel grids to provide relatively high speed and refine their results by using the original point cloud data for increased accuracy. Robustness has proven to be rather high, with occlusions, noise and point density variations being well-tolerated, meaning that each method can be applied to data acquired with a variety of capturing methods. All approaches work on unordered point clouds, with no additional data being required. In combination, these methods comprise a complete workflow with each singular component suitable for use in numerous scenarios.

Funder

Aachener Grundvermögen Kapitalgesellschaft

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3