Efficient 3D Mapping and Modelling of Indoor Scenes with the Microsoft HoloLens: A Survey

Author:

Weinmann MartinORCID,Wursthorn SvenORCID,Weinmann MichaelORCID,Hübner PatrickORCID

Abstract

AbstractThe Microsoft HoloLens is a head-worn mobile augmented reality device. It allows a real-time 3D mapping of its direct environment and a self-localisation within the acquired 3D data. Both aspects are essential for robustly augmenting the local environment around the user with virtual contents and for the robust interaction of the user with virtual objects. Although not primarily designed as an indoor mapping device, the Microsoft HoloLens has a high potential for an efficient and comfortable mapping of both room-scale and building-scale indoor environments. In this paper, we provide a survey on the capabilities of the Microsoft HoloLens (Version 1) for the efficient 3D mapping and modelling of indoor scenes. More specifically, we focus on its capabilities regarding the localisation (in terms of pose estimation) within indoor environments and the spatial mapping of indoor environments. While the Microsoft HoloLens can certainly not compete in providing highly accurate 3D data like laser scanners, we demonstrate that the acquired data provides sufficient accuracy for a subsequent standard rule-based reconstruction of a semantically enriched and topologically correct model of an indoor scene from the acquired data. Furthermore, we provide a discussion with respect to the robustness of standard handcrafted geometric features extracted from data acquired with the Microsoft HoloLens and typically used for a subsequent learning-based semantic segmentation.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Spatial Mapping in Architectural Visualization: A Comparison among Mixed Reality Devices;Sensors;2024-07-21

2. HoloGS: Instant Depth-based 3D Gaussian Splatting with Microsoft HoloLens 2;The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2024-06-11

3. Efficient Indoor Mapping with HoloLens 2;Proceedings of the 2024 International Conference on Advanced Visual Interfaces;2024-06-03

4. Methods and Applications of Space Understanding in Indoor Environment—A Decade Survey;Applied Sciences;2024-05-07

5. Low-Cost Data, High-Quality Models: A Semi-Automated Approach to LOD3 Creation;ISPRS International Journal of Geo-Information;2024-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3