Uncovering Early Traces of Bark Beetle Induced Forest Stress via Semantically Enriched Sentinel-2 Data and Spectral Indices

Author:

Mandl LisaORCID,Lang Stefan

Abstract

AbstractForest ecosystems are shaped by both abiotic and biotic disturbances. Unlike sudden disturbance agents, such as wind, avalanches and fire, bark beetle infestation progresses gradually. By the time infestation is observable by the human eye, trees are already in the final stages of infestation—the red- and grey-attack. In the relevant phase—the green-attack—biochemical and biophysical processes take place, which, however, are not or hardly visible. In this study, we applied a time series analysis based on semantically enriched Sentinel-2 data and spectral vegetation indices (SVIs) to detect early traces of bark beetle infestation in the Berchtesgaden National Park, Germany. Our approach used a stratified and hierarchical hybrid remote sensing image understanding system for pre-selecting candidate pixels, followed by the use of SVIs to confirm or refute the initial selection, heading towards a 'convergence of evidence approach’. Our results revealed that the near-infrared (NIR) and short-wave-infrared (SWIR) parts of the electromagnetic spectrum provided the best separability between pixels classified as healthy and early infested. Referring to vegetation indices, we found that those related to water stress have proven to be most sensitive. Compared to a SVI-only model that did not incorporate the concept of candidate pixels, our approach achieved distinctively higher producer’s accuracy (76% vs. 63%) and user’s accuracy (61% vs. 42%). The temporal accuracy of our method depends on the availability of satellite data and varies up to 3 weeks before or after the first ground-based detection in the field. Nonetheless, our method offers valuable early detection capabilities that can aid in implementing timely interventions to address bark beetle infestations in the early stage.

Funder

Bayerisches Staatsministerium für Umwelt und Verbraucherschutz

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3