Deep Learning Model for Wind Forecasting: Classification Analyses for Temporal Meteorological Data

Author:

Harbola ShubhiORCID,Coors VolkerORCID

Abstract

AbstractThis paper proposes a multiple CNN architecture with multiple input features, combined with multiple LSTM, along with densely connected convolutional layers, for temporal wind nature analyses. The designed architecture is called Multiple features, Multiple Densely Connected Convolutional Neural Network with Multiple LSTM Architecture, i.e. MCLT. A total of 58 features in the input layers of the MCLT are designed using wind speed and direction values. These empirical features are based on percentage difference, standard deviation, correlation coefficient, eigenvalues, and entropy, for efficiently describing the wind trend. Two successive LSTM layers are used after four densely connected convolutional layers of the MCLT. Moreover, LSTM has memory units that utilise learnt features from the current as well as previous outputs of the neurons, thereby enhancing the learning of patterns in the temporal wind dataset. Densely connected convolutional layer helps to learn features of other convolutional layers as well. The MCLT is used to predict dominant speed and direction classes in the future for the wind datasets of Stuttgart and Netherlands. The maximum and minimum overall accuracies for dominant speed prediction are 99.1% and 94.9%, (for Stuttgart) and 99.9% and 97.5% (for Netherlands) and for dominant direction prediction are 99.9% and 94.4% (for Stuttgart) and 99.6% and 96.4% (for Netherlands), respectively, using MCLT with 58 features. The MCLT, therefore, with multiple features at different levels, i.e. the input layers, the convolutional layers, and LSTM layers, shows promising results for the prediction of dominant speed and direction. Thus, this work is useful for proper wind utilisation and improving environmental planning. These analyses would also help in performing Computational Fluid Dynamics (CFD) simulations using wind speed and direction measured at a nearby meteorological station, for devising a new set of appropriate inflow boundary conditions.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3