Measuring the Wisdom of the Crowd: How Many is Enough?

Author:

Walter VolkerORCID,Kölle Michael,Collmar David

Abstract

AbstractThe idea of the wisdom of the crowd is that integrating multiple estimates of a group of individuals provides an outcome that is often better than most of the underlying estimates or even better than the best individual estimate. In this paper, we examine the wisdom of the crowd principle on the example of spatial data collection by paid crowdworkers. We developed a web-based user interface for the collection of vehicles from rasterized shadings derived from 3D point clouds and executed different data collection campaigns on the crowdsourcing marketplace microWorkers. Our main question is: how large must be the crowd in order that the quality of the outcome fulfils the quality requirements of a specific application? To answer this question, we computed precision, recall, F1 score, and geometric quality measures for different crowd sizes. We found that increasing the crowd size improves the quality of the outcome. This improvement is quite large at the beginning and gradually decreases with larger crowd sizes. These findings confirm the wisdom of the crowd principle and help to find an optimum number of the crowd size that is in the end a compromise between data quality, and cost and time required to perform the data collection.

Funder

Universität Stuttgart

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Instrumentation,Geography, Planning and Development

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Using the Wisdom of the Crowd to Improve the Condition Assessment of Residential Real Estate;Journal of Real Estate Research;2024-07-10

2. From citizen science to AI models: Advancing cetacean vocalization automatic detection through multi-annotator campaigns;Ecological Informatics;2024-07

3. Building a Fully-Automatized Active Learning Framework for the Semantic Segmentation of Geospatial 3D Point Clouds;PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science;2024-04

4. Crowdsourcing review: the crowd workers’ perspective;Journal of Industrial and Business Economics;2024-02-07

5. FROM MULTIPLE POLYGONS TO SINGLE GEOMETRY: OPTIMIZATION OF POLYGON INTEGRATION FOR CROWDSOURCED DATA;ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3