Neural network mapping of gelastic behavior in children with hypothalamus hamartoma

Author:

Guo Zhi-Hao,Zhang Jian-Guo,Shao Xiao-Qiu,Hu Wen-Han,Sang Lin,Zheng Zhong,Zhang Chao,Wang Xiu,Li Chun-De,Mo Jia-Jie,Zhang Kai

Abstract

Abstract Background Hypothalamus hamartomas (HHs) are rare, congenital, tumor-like, and nonprogressive malformations resulting in drug-resistant epilepsy, mainly affecting children. Gelastic seizures (GS) are an early hallmark of epilepsy with HH. The aim of this study was to explore the disease progression and the underlying physiopathological mechanisms of pathological laughter in HH. Methods We obtained clinical information and metabolic images of 56 HH patients and utilized ictal semiology evaluation to stratify the specimens into GS-only, GS-plus, and no-GS subgroups and then applied contrasted trajectories inference (cTI) to calculate the pseudotime value and evaluate GS progression. Ordinal logistic regression was performed to identify neuroimaging-clinical predictors of GS, and then voxelwise lesion network-symptom mapping (LNSM) was applied to explore GS-associated brain regions. Results cTI inferred the specific metabolism trajectories of GS progression and revealed increased complexity from GS to other seizure types. This was further validated via actual disease duration (Pearson R = 0.532, P = 0.028). Male sex [odds ratio (OR) = 2.611, P = 0.013], low age at seizure onset (OR = 0.361, P = 0.005), high normalized HH metabolism (OR =  − 1.971, P = 0.037) and severe seizure burden (OR =  − 0.006, P = 0.032) were significant neuroimaging clinical predictors. LNSM revealed that the dysfunctional cortico-subcortico-cerebellar network of GS and the somatosensory cortex (S1) represented a negative correlation. Conclusions This study sheds light on the clinical characteristics and progression of GS in children with HH. We identified distinct subtypes of GS and demonstrated the involvement of specific brain regions at the cortical–subcortical–cerebellar level. These valuable results contribute to our understanding of the neural correlates of GS.

Funder

Capital’s Funds for Health Improvement and Research

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Pediatrics, Perinatology and Child Health

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3