Identification of novel plant architecture mutants in barley

Author:

Mohammadi Aghdam SinaORCID,Abdollahi Mandoulakani BabakORCID,Rossini LauraORCID,Janiak Agnieszka,Shaaf SalarORCID

Abstract

AbstractIn grasses, biomass and grain production are affected by plant architecture traits such as tiller number, leaf size and orientation. Thus, knowledge regarding their genetic basis is a prerequisite for developing new improved varieties. Mutant screens represent a powerful approach to identify genetic factors underpinning these traits: the HorTILLUS population, obtained by mutagenesis of spring two-row cultivar Sebastian, is a valuable resource for this purpose in barley. In this study, 20 mutant families from the HorTILLUS population were selected and evaluated for tiller number, leaf angle and a range of other plant architecture and agronomic traits using an unreplicated field design with Sebastian as a check cultivar. Principal Component Analysis revealed strong relationships among number of tillers, upper canopy leaf angle, biomass and yield-related traits. Comparison to the Sebastian background revealed that most mutants significantly differed from the wild-type for multiple traits, including two mutants with more erect leaves and four mutants with increased tiller number in at least one phenological stage. Heatmap clustering identified two main groups: the first containing the two erect mutants and the second containing Sebastian and the high-tillering mutants. Among the high-tillering mutants, two showed significantly higher biomass and grain yield per plant compared to Sebastian. The selected mutants represent promising materials for the identification of genetic factors controlling tillering and leaf angle in barley.

Funder

FACCE SURPLUS BARPLUS

Università degli Studi di Milano

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3