Molecular mapping of QTL for rice black-streaked dwarf disease resistance in rice (Oryza sativa L.)

Author:

Sun Zhiguang,Pan Gen,An Hongzhou,Wang Baoxiang,Xu DayongORCID

Abstract

AbstractRice black-streaked dwarf disease (RBSDD) is one of the most serious crop diseases in Asia, causing serious damage to rice production. Therefore, reducing the harmful effects of RBSDD is vital to the food security of China and other Asian countries. In this study, 248 rice varieties from different countries were screened for resistance to RBSDD, and 19 varieties with high resistance to RBSDD were found. Among them, H185, an indica variety, showed stable and high resistance to RBSDD. Using an F2:3 population of H185 and Wuyujing 3 (WYJ3, a highly susceptible japonica rice variety), three QTL conferring resistance to RBSDD, namely qRBSDD2, qRBSDD7, and qRBSDD11 were identified, and they explained 53.6% of the total phenotypic variation. Among them, qRBSDD2 and qRBSDD7, with LOD scores of 4.26 and 4.25, respectively, were repeatedly detected in artificial inoculation conditions, accounting for 28.0% and 29.8% of the total phenotypic variation, respectively. Resistant alleles of the two QTL were all derived from H185, and several BC5F2 lines possessing single or two QTL of qRBSDD2 and qRBSDD7 exhibited higher resistance for RBSDD. The QTL detected in our study open new possibilities for breeding rice cultivars with RBSDD resistance through resistance gene pyramiding.

Funder

China Agriculture Research System

Natural Science Foundation of Jiangsu Province of China

The Project for Agricultural Significant New Varieties Breeding of Jiangsu Province

Natural Science Foundation of Hunan Province

Financial Grant Support Program of Lianyungang City

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3