Binary Interaction Methods for High Dimensional Global Optimization and Machine Learning

Author:

Benfenati AlessandroORCID,Borghi GiacomoORCID,Pareschi LorenzoORCID

Abstract

AbstractIn this work we introduce a new class of gradient-free global optimization methods based on a binary interaction dynamics governed by a Boltzmann type equation. In each interaction the particles act taking into account both the best microscopic binary position and the best macroscopic collective position. For the resulting kinetic optimization methods, convergence to the global minimizer is guaranteed for a large class of functions under appropriate parameter constraints that do not depend on the dimension of the problem. In the mean-field limit we show that the resulting Fokker-Planck partial differential equations generalize the current class of consensus based optimization (CBO) methods. Algorithmic implementations inspired by the well-known direct simulation Monte Carlo methods in kinetic theory are derived and discussed. Several examples on prototype test functions for global optimization are reported including an application to machine learning.

Funder

MIUR

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization

Reference48 articles.

1. Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing. Wiley, New York (1989)

2. Albi, G., Choi, Y.-P., Fornasier, M., Kalise, D.: Mean field control hierarchy. Appl. Math. Optim. 76(1), 93–135 (2017)

3. Albi, G., Pareschi, L.: Binary interaction algorithms for the simulation of flocking and swarming dynamics. Multiscale Model Simul. 11(1), 1–29 (2013)

4. Albi, G., Pareschi, L., Toscani, G., Zanella, M.: Recent advances in opinion modeling: control and social influence. In: Bellomo, N., Pierre, D., Eitan, T. (eds.) Active Particles, Modeling and Simulation in Science, Engineering and Technology, vol. 1, pp. 49–98. Birkhäuser, Cham (2017)

5. Albi, G., Pareschi, L., Zanella, M.: Opinion dynamics over complex networks: kinetic modelling and numerical methods. Kinet. Relat. Models 10(1), 1–32 (2017)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinetic-based optimization enhanced by genetic dynamics;Mathematical Models and Methods in Applied Sciences;2023-11-16

2. Consensus based optimization with memory effects: Random selection and applications;Chaos, Solitons & Fractals;2023-09

3. An Adaptive Consensus Based Method for Multi-objective Optimization with Uniform Pareto Front Approximation;Applied Mathematics & Optimization;2023-08-10

4. Consensus-based optimization via jump-diffusion stochastic differential equations;Mathematical Models and Methods in Applied Sciences;2023-02

5. Constrained Consensus-Based Optimization;SIAM Journal on Optimization;2023-01-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3