Continuous-Time Mean Field Markov Decision Models

Author:

Bäuerle NicoleORCID,Höfer Sebastian

Abstract

AbstractWe consider a finite number of N statistically equal agents, each moving on a finite set of states according to a continuous-time Markov Decision Process (MDP). Transition intensities of the agents and generated rewards depend not only on the state and action of the agent itself, but also on the states of the other agents as well as the chosen action. Interactions like this are typical for a wide range of models in e.g. biology, epidemics, finance, social science and queueing systems among others. The aim is to maximize the expected discounted reward of the system, i.e. the agents have to cooperate as a team. Computationally this is a difficult task when N is large. Thus, we consider the limit for $$N\rightarrow \infty .$$ N . In contrast to other papers we treat this problem from an MDP perspective. This has the advantage that we need less regularity assumptions in order to construct asymptotically optimal strategies than using viscosity solutions of HJB equations. The convergence rate is $$1/\sqrt{N}$$ 1 / N . We show how to apply our results using two examples: a machine replacement problem and a problem from epidemics. We also show that optimal feedback policies from the limiting problem are not necessarily asymptotically optimal.

Funder

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3