A Study of Certain Sharp Poincaré Constants as Set Functions of Their Domain

Author:

Bevan J. J.ORCID,Deane J. H. B.

Abstract

AbstractFor bounded, convex sets $$\Omega \subset \mathbb {R}^d$$ Ω R d , the sharp Poincaré constant $$C(\Omega )$$ C ( Ω ) , which appears in $$||f-\bar{f}_{_{\Omega }}||_{L^{\infty }(\Omega )} \le C(\Omega )||\nabla f||_{L^{\infty }(\Omega )}$$ | | f - f ¯ Ω | | L ( Ω ) C ( Ω ) | | f | | L ( Ω ) , is given by $$C(\Omega )=\max _{_{\partial \Omega }}\zeta $$ C ( Ω ) = max Ω ζ for a specific convex function $$\zeta $$ ζ [Bevan et al. in Proc Am Math Soc 151:1071–1085, 2023 (Theorem 1.1)]. We study $$C(\cdot )$$ C ( · ) as a function on convex sets, in particular on polyhedra, and find that while a geometric characterization of $$C(\Omega )$$ C ( Ω ) for triangles is possible, for other polyhedra the problem of ordering $$\zeta (V_i)$$ ζ ( V i ) , where $$V_i$$ V i are the vertices of $$\Omega $$ Ω , can be formidable. In these cases, we develop estimates of $$C(\Omega )$$ C ( Ω ) from above and below in terms of more tractable quantities. We find, for example, that a good proxy for C(Q) when Q is a planar polygon with vertices $$V_i$$ V i and centroid $$\gamma (Q)$$ γ ( Q ) is the quantity $$D(Q)=\max _{i}|V_i-\gamma (Q)|$$ D ( Q ) = max i | V i - γ ( Q ) | , with an error of up to $$\sim 8\%$$ 8 % . A numerical study suggests that a similar statement holds for k-gons, this time with a maximal error across all k-gons of $$\sim 13\%$$ 13 % . We explore the question of whether there is, for each $$\Omega $$ Ω , at least one point M capable of ordering the $$\zeta (V_i)$$ ζ ( V i ) according to the ordering of the $$|V_i-M|$$ | V i - M | . For triangles, M always exists; for quadrilaterals, M seems always to exist; for 5-gons and beyond, they seem not to.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3