Abstract
AbstractIn this paper, we establish the existence of normalized solutions to the following Kirchhoff-type equation $$\begin{aligned} \left\{ \begin{array}{ll} -\left( a+b\int _{{\mathbb {R}}^3}|\nabla u|^2{\mathrm {d}}x\right) \Delta u-\lambda u=K(x)f(u), &{} x\in {\mathbb {R}}^3; \\ u\in H^1({\mathbb {R}}^3), \end{array} \right. \end{aligned}$$
-
a
+
b
∫
R
3
|
∇
u
|
2
d
x
Δ
u
-
λ
u
=
K
(
x
)
f
(
u
)
,
x
∈
R
3
;
u
∈
H
1
(
R
3
)
,
where $$a, b> 0$$
a
,
b
>
0
, $$\lambda $$
λ
is unknown and appears as a Lagrange multiplier, $$K\in {\mathcal {C}}({\mathbb {R}}^3, {\mathbb {R}}^+)$$
K
∈
C
(
R
3
,
R
+
)
with $$0<\lim _{|y|\rightarrow \infty }K(y)\le \inf _{{\mathbb {R}}^3} K$$
0
<
lim
|
y
|
→
∞
K
(
y
)
≤
inf
R
3
K
, and $$f\in {\mathcal {C}}({\mathbb {R}},{\mathbb {R}})$$
f
∈
C
(
R
,
R
)
satisfies general $$L^2$$
L
2
-supercritical or $$L^2$$
L
2
-subcritical conditions. We introduce some new analytical techniques in order to exclude the vanishing and the dichotomy cases of minimizing sequences due to the presence of the potential K and the lack of the homogeneity of the nonlinearity f. This paper extends to the nonautonomous case previous results on prescribed $$L^2$$
L
2
-norm solutions of Kirchhoff problems.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference33 articles.
1. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348, 305–330 (1996)
2. Azzollini, A.: A note on the elliptic Kirchhoff equation in $${\mathbb{R}}^N$$ perturbed by a local nonlinearity. Commun. Contemp. Math. 17, 1450039 (2015)
3. Bellazzini, J., Siciliano, G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. 261, 2486–2507 (2011)
4. Bellazzini, J., Jeanjean, L., Luo, T.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations. Proc. Lond. Math. Soc. 107, 303–339 (2013)
5. Bernstein, S.: Sur une class d’équations fonctionnelles aux dérivées partielles. Bull. Acad. Sci. URSS. Sér. Math. 4, 17–26 (1940)
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献