Abstract
AbstractWe adapt Lyon’s rough path theory to study Landau–Lifshitz–Gilbert equations (LLGEs) driven by geometric rough paths in one dimension, with non-zero exchange energy only. We convert the LLGEs to a fully nonlinear time-dependent partial differential equation without rough paths term by a suitable transformation. Our point of interest is the regular approximation of the geometric rough path. We investigate the limit equation, the form of the correction term, and its convergence rate in controlled rough path spaces. The key ingredients for constructing the solution and its corresponding convergence results are the Doss–Sussmann transformation, maximal regularity property, and the geometric rough path theory.
Funder
OeAD-GmbH
Österreichische Forschungsförderungsgesellschaft
H2020 European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference30 articles.
1. Bailleul, I., Gubinelli, M.: Unbounded rough drivers. Annales de la Faculté des sciences de Toulouse : Mathématiques Ser. 6 26(4), 795–830 (2017)
2. Brown, W.F.: Thermal fluctuations of a single-domain particle. Phys. Rev. 130(5), 1677–1686 (1963)
3. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Weak solutions of a stochastic Landau-Lifshitz-Gilbert Equation. Appl. Math. Res. eXpress 2013(1), 1–33 (2012)
4. Brzeźniak, Z., Goldys, B., Jegaraj, T.: Large deviations and transitions between equilibria for stochastic Landau-Lifshitz-Gilbert equation. Arch. Ration. Mech. Anal. 226(2), 497–558 (2017)
5. Brzeźniak, Z., Liang, L.: Weak solutions of the stochastic Landau-Lifshitz-Gilbert equations with nonzero anisotrophy energy. Appl. Math. Res. Express. AMRX 2016(2), 334–375 (2016)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献