Abstract
AbstractWith reference to an optimal control problem where the state has to approach asymptotically a closed target while paying a non-negative integral cost, we propose a generalization of the classical dissipative relation that defines a Control Lyapunov Function to a weaker differential inequality. The latter involves both the cost and the iterated Lie brackets of the vector fields in the dynamics up to a certain degree $$k\ge 1$$
k
≥
1
, and we call any of its (suitably defined) solutions a degree-kMinimum Restraint Function. We prove that the existence of a degree-k Minimum Restraint Function allows us to build a Lie-bracket-based feedback which sample stabilizes the system to the target while regulating (i.e., uniformly bounding) the cost.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilitá e le loro Applicazioni
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献