Author:
Kunisch Karl,Priyasad Buddhika
Abstract
AbstractAn abstract framework guaranteeing the local continuous differentiability of the value function associated with optimal stabilization problems subject to abstract semilinear parabolic equations subject to a norm constraint on the controls is established. It guarantees that the value function satisfies the associated Hamilton–Jacobi–Bellman equation in the classical sense. The applicability of the developed framework is demonstrated for specific semilinear parabolic equations.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference27 articles.
1. Bensoussan, A., Da Prato, G., Delfour, M., Mitter, S.: Representation and Control of Infinite Dimensional Systems. Birkhäuser, Boston (2007)
2. Bergounioux, M., Merabet, N.: Sensitivity analysis for optimal control problems governed by semilinear parabolic equations. Control Cybern. 28(3), 207 (1999)
3. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, p. 526. Springer, New York (2013)
4. Breiten, T., Kunisch, K., Pfeiffer, L.: Taylor Expansion of the value Function associated with a bilinear optimal control problem. Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire (2019)
5. Breiten, T., Kunisch, K., Pfeiffer, L.: Infinite-horizon bilinear optimal control problems: sensitivity analysis and polynomial feedback laws. SIAM J. Control. Optim. 56, 3184–3214 (2018)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献