Abstract
AbstractWe look for minimizers of the buckling load problem with perimeter constraint in any dimension. In dimension 2, we show that the minimizing plates are convex; in higher dimension, by passing through a weaker formulation of the problem, we show that any optimal set is open and connected. For the higher eigenvalues, we prove that minimizers exist among convex sets with prescribed perimeter.
Funder
Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni
Ministero dell’Università e della Ricerca
Università del Salento
Publisher
Springer Science and Business Media LLC
Reference25 articles.
1. Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, vol. 314. Springer, New York (1999)
2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
3. Antunes, P.R.S., Gazzola, F.: Convex shape optimization for the least biharmonic Steklov eigenvalue. ESAIM Control Optim. Calc. Var. 19(2), 385–403 (2013). https://doi.org/10.1051/cocv/2012014
4. Ashbaugh, S., Bucur, D.: On the isoperimetric inequality for the buckling of a clamped plate. Zeitschrift für angewandte Mathematik und Physik ZAMP 54(5), 756–770 (2003)
5. Bucur, D.: Regularity of optimal convex shapes. J. Convex Anal. 10(2), 501–516 (2003)