Abstract
AbstractWe consider a nonlinear Dirichlet problem driven by the (p, q)-Laplacian with $$1<q<p$$
1
<
q
<
p
. The reaction is parametric and exhibits the competing effects of a singular term and of concave and convex nonlinearities. We are looking for positive solutions and prove a bifurcation-type theorem describing in a precise way the set of positive solutions as the parameter varies. Moreover, we show the existence of a minimal positive solution and we study it as a function of the parameter.
Funder
Technische Universität Berlin
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference30 articles.
1. Ambrosetti, A., Brezis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 122(2), 519–543 (1994)
2. Benci, V., D’Avenia, P., Fortunato, D., Pisani, L.: Solitons in several space dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration. Mech. Anal. 154(4), 297–324 (2000)
3. Cherfils, L., Il’yasov, Y.: On the stationary solutions of generalized reaction diffusion equations with p&q-Laplacian. Commun. Pure Appl. Anal. 4(1), 9–22 (2005)
4. Díaz, J.I., Saá, J.E.: Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires. C. R. Acad. Sci. Paris Sér. I Math. 305(12), 521–524 (1987)
5. García Azorero, J.P., Peral Alonso, I., Manfredi, J.: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations. Commun. Contemp. Math. 2(3), 385–404 (2000)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献