Abstract
AbstractWe investigate a quasilinear system consisting of the Westervelt equation from nonlinear acoustics and Pennes bioheat equation, subject to Dirichlet or Neumann boundary conditions. The concept of maximal regularity of type $$L_p$$
L
p
–$$L_q$$
L
q
is applied to prove local and global well-posedness. Moreover, we show by a parameter trick that the solutions regularize instantaneously. Finally, we compute the equilibria of the system and investigate the long-time behaviour of solutions starting close to equilibria.
Funder
Martin-Luther-Universität Halle-Wittenberg
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献