Abstract
AbstractThis work deals with a chemotaxis model where an external source involving a sub and superquadratic growth effect contrasted by nonlocal dampening reaction influences the motion of a cell density attracted by a chemical signal. We study the mechanism of the two densities once their initial configurations are fixed in bounded impenetrable regions; in the specific, we establish that no gathering effect for the cells can appear in time provided that the dampening effect is strong enough. Mathematically, we are concerned with this problem $$\begin{aligned} {\left\{ \begin{array}{ll} u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+au^\alpha -bu^\alpha \int _\Omega u^\beta &{}\textrm{in}\ \Omega \times (0, T_{max}),\\ \tau v_t=\Delta v-v+u &{}\textrm{in}\ \Omega \times (0, T_{max}),\\ u_\nu =v_\nu =0 &{}\textrm{on}\ \partial \Omega \times (0, T_{max}),\\ u(x, 0)=u_0(x)\ge 0, v(x,0)=v_0(x)\ge 0, &{}x \in {\bar{\Omega }}, \end{array}\right. } \quad {\Diamond } \end{aligned}$$
u
t
=
Δ
u
-
χ
∇
·
(
u
∇
v
)
+
a
u
α
-
b
u
α
∫
Ω
u
β
in
Ω
×
(
0
,
T
max
)
,
τ
v
t
=
Δ
v
-
v
+
u
in
Ω
×
(
0
,
T
max
)
,
u
ν
=
v
ν
=
0
on
∂
Ω
×
(
0
,
T
max
)
,
u
(
x
,
0
)
=
u
0
(
x
)
≥
0
,
v
(
x
,
0
)
=
v
0
(
x
)
≥
0
,
x
∈
Ω
¯
,
◊
for $$\tau =1$$
τ
=
1
, $$n\in {\mathbb {N}}$$
n
∈
N
, $$\chi ,a,b>0$$
χ
,
a
,
b
>
0
and $$\alpha , \beta \ge 1$$
α
,
β
≥
1
. Herein u stands for the population density, v for the chemical signal and $$T_{max}$$
T
max
for the maximal time of existence of any nonnegative classical solution (u, v) to system ($$\Diamond $$
◊
). We prove that despite any large-mass initial data $$u_0$$
u
0
, whenever
(The subquadratic case) $$1\le \alpha <2 \quad \text {and} \quad \beta >\frac{n+4}{2}-\alpha ,$$
1
≤
α
<
2
and
β
>
n
+
4
2
-
α
,
(The superquadratic case) $$\beta >\frac{n}{2} \quad \text {and} \quad 2\le \alpha < 1+ \frac{2\beta }{n},$$
β
>
n
2
and
2
≤
α
<
1
+
2
β
n
,
actually $$T_{max}=\infty $$
T
max
=
∞
and u and v are uniformly bounded. This paper is in line with the result in Bian et al. (Nonlinear Anal 176:178–191, 2018), where the same conclusion is established for the simplified parabolic-elliptic version of model ($$\Diamond $$
◊
), corresponding to $$\tau =0$$
τ
=
0
; more exactly, this work extends the study to the fully parabolic case Bian et al. (Nonlinear Anal 176:178–191, 2018).
Funder
Fondazione di Sardegna
Ministero dell’Istruzione, dell’Università e della Ricerca
Ministero dell’Università e della Ricerca
Università degli Studi di Cagliari
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Control and Optimization
Reference47 articles.
1. Bian, S., Chen, L., Latos, E.A.: Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system. Nonlinear Anal. 176, 178–191 (2018)
2. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theoret. Biol. 30(2), 225–234 (1971)
3. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26(3), 399–415 (1970)
4. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(4), 633–683 (1997)
5. Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6(1), 37–55 (2001)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献