Boundedness Through Nonlocal Dampening Effects in a Fully Parabolic Chemotaxis Model with Sub and Superquadratic Growth

Author:

Chiyo Yutaro,Düzgün Fatma Gamze,Frassu SilviaORCID,Viglialoro Giuseppe

Abstract

AbstractThis work deals with a chemotaxis model where an external source involving a sub and superquadratic growth effect contrasted by nonlocal dampening reaction influences the motion of a cell density attracted by a chemical signal. We study the mechanism of the two densities once their initial configurations are fixed in bounded impenetrable regions; in the specific, we establish that no gathering effect for the cells can appear in time provided that the dampening effect is strong enough. Mathematically, we are concerned with this problem $$\begin{aligned} {\left\{ \begin{array}{ll} u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+au^\alpha -bu^\alpha \int _\Omega u^\beta &{}\textrm{in}\ \Omega \times (0, T_{max}),\\ \tau v_t=\Delta v-v+u &{}\textrm{in}\ \Omega \times (0, T_{max}),\\ u_\nu =v_\nu =0 &{}\textrm{on}\ \partial \Omega \times (0, T_{max}),\\ u(x, 0)=u_0(x)\ge 0, v(x,0)=v_0(x)\ge 0, &{}x \in {\bar{\Omega }}, \end{array}\right. } \quad {\Diamond } \end{aligned}$$ u t = Δ u - χ · ( u v ) + a u α - b u α Ω u β in Ω × ( 0 , T max ) , τ v t = Δ v - v + u in Ω × ( 0 , T max ) , u ν = v ν = 0 on Ω × ( 0 , T max ) , u ( x , 0 ) = u 0 ( x ) 0 , v ( x , 0 ) = v 0 ( x ) 0 , x Ω ¯ , for $$\tau =1$$ τ = 1 , $$n\in {\mathbb {N}}$$ n N , $$\chi ,a,b>0$$ χ , a , b > 0 and $$\alpha , \beta \ge 1$$ α , β 1 . Herein u stands for the population density, v for the chemical signal and $$T_{max}$$ T max for the maximal time of existence of any nonnegative classical solution (uv) to system ($$\Diamond $$ ). We prove that despite any large-mass initial data $$u_0$$ u 0 , whenever (The subquadratic case) $$1\le \alpha <2 \quad \text {and} \quad \beta >\frac{n+4}{2}-\alpha ,$$ 1 α < 2 and β > n + 4 2 - α , (The superquadratic case) $$\beta >\frac{n}{2} \quad \text {and} \quad 2\le \alpha < 1+ \frac{2\beta }{n},$$ β > n 2 and 2 α < 1 + 2 β n , actually $$T_{max}=\infty $$ T max = and u and v are uniformly bounded. This paper is in line with the result in Bian et al. (Nonlinear Anal 176:178–191, 2018), where the same conclusion is established for the simplified parabolic-elliptic version of model ($$\Diamond $$ ), corresponding to $$\tau =0$$ τ = 0 ; more exactly, this work extends the study to the fully parabolic case Bian et al. (Nonlinear Anal 176:178–191, 2018).

Funder

Fondazione di Sardegna

Ministero dell’Istruzione, dell’Università e della Ricerca

Ministero dell’Università e della Ricerca

Università degli Studi di Cagliari

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Control and Optimization

Reference47 articles.

1. Bian, S., Chen, L., Latos, E.A.: Nonlocal nonlinear reaction preventing blow-up in supercritical case of chemotaxis system. Nonlinear Anal. 176, 178–191 (2018)

2. Keller, E.F., Segel, L.A.: Model for chemotaxis. J. Theoret. Biol. 30(2), 225–234 (1971)

3. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theoret. Biol. 26(3), 399–415 (1970)

4. Herrero, M.A., Velázquez, J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24(4), 633–683 (1997)

5. Nagai, T.: Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains. J. Inequal. Appl. 6(1), 37–55 (2001)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3