Abstract
AbstractThe Eurasian perch (Perca fluviatilis Linnaeus, 1758) is native to almost entire Eurasia. For over the last two decades, this species became an important candidate for intensive freshwater aquaculture due to its high consumer’s acceptance and overall market value. Hence, the intensive production of Eurasian perch has increased considerably allowing effective domestication; there is still a need for the development of effective selective breeding programmes allowing its further expansion. This process, in turn, can be significantly facilitated by molecular genetics. The genetic information of Eurasian perch and its populations is limited. Up to date information of regarding genetic diversity of many populations is still missing, including microsatellites for Eurasian perch, which could be useful during the selective breeding programmes allowing parental assignment and/or to follow heritability of desired traits. In this study, we have developed and characterized new polymorphic microsatellites. Subsequently, those 12 markers have been used further to compare two Hungarian and one Polish Eurasian perch populations. The Hungarian stocks had high genetic similarity (with low diversity), as we assumed, while the Polish population differed significantly. All populations deviated significantly from the Hardy–Weinberg equilibrium, and heterozygote deficiency was detected in all, showing the presence of an anthropogenic effect.
Funder
Hungarian Scientific Research Fund
Thematic Excellence Programme 2020 Institutional Excellence Subprogramme
European Social Fund
Hungarian University of Agriculture and Life Sciences
Publisher
Springer Science and Business Media LLC
Subject
General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献