1. I. M. Anderson and T. Duchamp, “On the existence of global variational principles,” Am. J. Math., 102, No. 5, 781–868 (1980).
2. M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher-Order Derivatives, North-Holland Math. Stud., 112, Notes on Pure Math., 102, North-Holland Publishing, Amsterdam (1985).
3. G. Giachetta, L. Mangiarotti, and G. Sardanashvili, New Lagrangian and Hamiltonian Methods in Field Theory, World Scientific, River Edge, NJ (1997).
4. H. Goldschmidt and S. Sternberg, “The Hamilton–Cartan formalism in the calculus of variations,” Ann. Inst. Fourier, 23, No. 1, 203–267 (1973).
5. D. Krupka, “On the local structure of the Euler–Lagrange mapping of the calculus of variations,” in: Proc. Conf. on Differential Geometry and Its Applications (Nove Mesto na Morave, 1980), Univ. Karlova, Prague (1982), pp. 181–188.