1. H. Weyl, “The method of orthogonal projection in potential theory,” Duke Math. J. 7, 414–444 (1940).
2. R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, North-Holland Publ., Oxford (1977).
3. Yu. A. Dubinskii, “Analytic ‘boundary-value’ problems on the plane” [in Russian], Usp. Mat. Nauk 52, No. 3, 53–104 (1997); English transl.: Russ. Math. Surv. 52, No. 3, 501–550 (1997).
4. O. A. Ladyzhenskaya, “On a relationship between the Stokes problem and decompositions of the spaces $ \mathop {W_2^1 }\limits^ \circ $ and $ W_2^{\left( { - 1} \right)} $ ” [in Russian], Algebra Anal. 13, No. 4, 119–133 (2001); English transl.: St. Petersburg Math. J. 13, No. 4, 601–612 (2002).
5. Yu. A. Dubinskii, “Decompositions of the spaces $ W_p^m $ and $ D_p^{m,k} $ into the sum of the solenoidal and potential subspaces, and factorization inequalities” [in Russian], Dokl. Akad. Nauk 408, No. 2, 160–164 (2006).