Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Statistics and Probability
Reference21 articles.
1. L. V. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton, 1966.
2. C. J. Earle, I. Kra, and S. L. Krushkal, “Holomorphic motions and Teichmüller spaces,” Trans. Amer. Math. Soc., 944, 927–948 (1994).
3. F. P. Gardiner, Carathéodory and Kobayashi metrics on Teichmüller space. arXiv:1711.00035v1 [mathCV].
4. F. P. Gardiner and N. Lakic, Quasiconformal Teichmüller Theory. Amer. Math. Soc., Providence, RI, 2000.
5. A. Z. Grinshpan, Logarithmic geometry, exponentiation, and coefficient bounds of univalent functions and nonoverlaping domains, Ch. 10. In: Handbook of Complex Analysis: Geometric Function Theory, Vol. 1 (R. Kühnau, ed.), Elsevier Science, Amsterdam, pp. 273–332, 2002.