Author:
Borzov V. V.,Damaskinsky E. V.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics,Statistics and Probability
Reference24 articles.
1. V. V. Dodonov, “’Nonclassical’ states in quantum optics: a ’squeezed’ review of the first 75 years,” J. Opt. B., 4:1, R1–R33 (2002)
2. A. Miranowicz, W. Leonski, and N. Imoto, “Quantum-optical states in finite-dimensional Hilbert space. I. General formalism,” in: M. W. Evans (ed.), Modern Nonlinear Optics, Advances in Chemical Physics, Wiley, New York, 119 (2001), pp. 155–193; quant-ph/0108080; W. Leonski and A. Miranowicz, “Quantum-optical states in finite-dimensional Hilbert space. II. State generation,” in: M. W. Evans (ed.), Modern Nonlinear Optics, Advances in Chemical Physics, Wiley, New York, 119 (I) (2001), pp. 195–213; quant-ph/0110146.
3. D. Galetti, M. A. Marchiolli, and M. Ruzzi, “Extended Cahill-Glauber formalism for finite dimensional spaces: I. Fundamentals,” J. Phys. A. Math. General, 38, 6239 (2005); quant-ph/0503054. II. Applications in quantum tomography and quantum teleportation,” Phys. Rev. A., 72, 042308 (2005); quant-ph/0504107; D. Galetti and M. A. Marchiolli, “Discrete coherent states and probability distributions in finite-dimensional spaces,” Ann. Phys., 249 454–480 (1996); M. A. Marchiolli, “Nonclassical statistical properties of finite-coherent states in the framework of the Jaynes-Cummings model,” Physica A, 319, 331–354 (2003).
4. V. V. Borzov, “Orthogonal polynomials and generalized oscillator algebras,” Integral Transf. Special Funct., 12, 115–138 (2001); math.CA/0002226.
5. V. V. Borzov and E. V. Damaskinsky, “Realization of the annihilation operator for an oscillator-like system by a differential operator and Hermite-Chihara polynomials,” Integral Transf. Special Funct., 13, 547–554 (2002); math.QA/0101215.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献